664 research outputs found

    What brakes the Crab pulsar?

    Get PDF
    Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2.0e10 turns. Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.Comment: 11 pages, 8 figures, 3 tables; accepted for publication in Astronomy & Astrophysic

    Aqueye+: a new ultrafast single photon counter for optical high time resolution astrophysics

    Get PDF
    Aqueye+ is a new ultrafast optical single photon counter, based on single photon avalanche photodiodes (SPAD) and a 4-fold split-pupil concept. It is a completely revisited version of its predecessor, Aqueye, successfully mounted at the 182 cm Copernicus telescope in Asiago. Here we will present the new technological features implemented on Aqueye+, namely a state of the art timing system, a dedicated and optimized optical train, a high sensitivity and high frame rate field camera and remote control, which will give Aqueye plus much superior performances with respect to its predecessor, unparalleled by any other existing fast photometer. The instrument will host also an optical vorticity module to achieve high performance astronomical coronography and a real time acquisition of atmospheric seeing unit. The present paper describes the instrument and its first performances.Comment: Proceedings of the SPIE, Volume 9504, id. 95040C 14 pp. (2015

    Optical phase coherent timing of the Crab nebula pulsar with Iqueye at the ESO New Technology Telescope

    Full text link
    The Crab nebula pulsar was observed in 2009 January and December with a novel very fast optical photon counter, Iqueye, mounted at the ESO 3.5 m New Technology Telescope. Thanks to the exquisite quality of the Iqueye data, we computed accurate phase coherent timing solutions for the two observing runs and over the entire year 2009. Our statistical uncertainty on the determination of the phase of the main pulse and the rotational period of the pulsar for short (a few days) time intervals are 1μ\approx 1 \, \mus and ~0.5 ps, respectively. Comparison with the Jodrell Bank radio ephemerides shows that the optical pulse leads the radio one by ~240 μ\mus in January and ~160 μ\mus in December, in agreement with a number of other measurements performed after 1996. A third-order polynomial fit adequately describes the spin-down for the 2009 January plus December optical observations. The phase noise is consistent with being Gaussian distributed with a dispersion σ\sigma of 15μ\approx 15 \, \mus in most observations, in agreement with theoretical expectations for photon noise-induced phase variability.Comment: 10 pages, 5 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Evaluation of an Area-Based matching algorithm with advanced shape models

    Get PDF
    Nowadays, the scientific institutions involved in planetary mapping are working on new strategies to produce accurate high resolution DTMs from space images at planetary scale, usually dealing with extremely large data volumes. From a methodological point of view, despite the introduction of a series of new algorithms for image matching (e.g. the Semi Global Matching) that yield superior results (especially because they produce usually smooth and continuous surfaces) with lower processing times, the preference in this field still goes to well established area-based matching techniques. Many efforts are consequently directed to improve each phase of the photogrammetric process, from image pre-processing to DTM interpolation. In this context, the Dense Matcher software (DM) developed at the University of Parma has been recently optimized to cope with very high resolution images provided by the most recent missions (LROC NAC and HiRISE) focusing the efforts mainly to the improvement of the correlation phase and the process automation. Important changes have been made to the correlation algorithm, still maintaining its high performance in terms of precision and accuracy, by implementing an advanced version of the Least Squares Matching (LSM) algorithm. In particular, an iterative algorithm has been developed to adapt the geometric transformation in image resampling using different shape functions as originally proposed by other authors in different applications

    QuantEYE: The Quantum Optics Instrument for OWL

    Full text link
    QuantEYE is designed to be the highest time-resolution instrument on ESO:s planned Overwhelmingly Large Telescope, devised to explore astrophysical variability on microsecond and nanosecond scales, down to the quantum-optical limit. Expected phenomena include instabilities of photon-gas bubbles in accretion flows, p-mode oscillations in neutron stars, and quantum-optical photon bunching in time. Precise timescales are both variable and unknown, and studies must be of photon-stream statistics, e.g., their power spectra or autocorrelations. Such functions increase with the square of the intensity, implying an enormously increased sensitivity at the largest telescopes. QuantEYE covers the optical, and its design involves an array of photon-counting avalanche-diode detectors, each viewing one segment of the OWL entrance pupil. QuantEYE will work already with a partially filled OWL main mirror, and also without [full] adaptive optics.Comment: 7 pages; Proceedings from meeting 'Instrumentation for Extremely Large Telescopes', held at Ringberg Castle, July 2005 (T.Herbst, ed.

    Aqueye optical observations of the Crab Nebula pulsar

    Full text link
    We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hundreds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).Comment: 7 pages, 7 figures. Accepted for publication in Astronomy and Astrophysic

    The GINGER Project and status of the ring-laser of LNGS

    Get PDF
    A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector; it is based on an array of ring-lasers. Comparing the Earth angular velocity measured by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be evaluated. Compared to the existing space experiments, GINGER provides a local measurement, not the averaged value and it is unnecessary to model the gravitational field. It is a proposal, but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system which provides the measure of the Length Of the DAY (LOD); G provides information on the fast component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso and some results will be presented. The first results of GINGERino will be reported, GINGERino is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers provide as well important informations for geophysics, in particular the rotational seismology, which is an emerging field of science. GINGERino is one of the three experiments of common interest between INFN and INGV

    (Very) Fast astronomical photometry for meter-class telescopes

    Get PDF
    Our team at the INAF-Astronomical Observatory of Padova and the University of Padova is engaged in the design, construction and operations of instruments with very high time accuracy in the optical band for applications to High Time Resolution Astrophysics and Quantum Astronomy. Two instruments were built to perform photon counting with sub-nanosecond temporal accuracy, Aqueye+ and Iqueye. Aqueye+ is regularly mounted at the 1.8m Copernicus telescope in Asiago, while Iqueye was mounted at several 4m class telescopes around the world and is now attached through the Iqueye Fiber Interface to the 1.2m Galileo telescope in Asiago. They are used to perform coordinated high time resolution optical observations and, for the first time ever, experiments of optical intensity interferometry on a baseline of a few kilometers. We report on recent technological developments and scientific results obtained within the framework of this project...
    corecore